The combination of warm spring weather and rain always brings an increase in fire ant activity. Where it is likely that people will come into contact with these stinging pests, there is probably a need for control. Spring is an excellent time to get started on fire ant management and effective management starts with a good plan. Fire ant eradication is not feasible, so consider your management strategy carefully. First, target the mounds in areas where people are most likely to be stung. Using a mound drench is the best method to quickly remove colonies where immediate control is necessary. Fire ant baits offer the most cost effective and environmentally friendly control where time is less critical.

Many effective baits and contact insecticides are available. Most products only provide control for a limited time. Once initiated, a fire ant control program is a long-term commitment. Abandoning treatments usually results in even higher fire ant populations. Therefore, tailor management according to your budget and realistic need for control at your site. Successful fire ant management requires diligence, commitment to a sound program, realistic expectations, and an understanding of the ants and the products used to control them.
It takes skill to raise blemish–free flavorful tomatoes and protect them from insects, diseases and other pests. Here’s how to handle existing problems and prevent new ones.

Controlling Blossom-End Rot

This is a common problem, so we will discuss it first. The first sign is a water-soaked spot near the blossom end of the fruit. This spot becomes brown or black and may enlarge until it covers a third to half of the fruit. As the spot grows, the tissues shrink and the surface becomes dark, leathery and often sunken.

The basic cause of blossom-end rot is a lack of calcium, so ensure an ample supply. Test your garden’s soil pH before planting (please contact Stanly County Cooperative Extension Service for more information). If the pH is less than 6.8, spread ground lime before setting out the tomato transplants.

Water regularly so tomato plants receive a uniform supply of moisture. Keep the soil evenly moist but not extremely wet. Spread a 2-inch blanket of mulch over the roots to conserve moisture. Use grass clippings, compost or weed-free straw, replenishing as needed.

If blossom end rot is already occurring, mix one tablespoon of calcium chloride per gallon of water and spray the foliage two or three times a week as the tomatoes are developing. Do not spray for the entire season, as it may injure the foliage.

Other Common Tomato Problems

Cracking

Tomatoes often crack after rainy periods and high temperatures that favor rapid growth. They are most likely to crack when they have reached full size and are turning color. Cracks blemish the fruit and often create points of infection.

The best way to avoid cracking is to plant resistant varieties. Also water regularly to keep soil moisture uniform throughout the growing season.

Blossom Drop

Tomato plants often develop beautiful blossoms that mysteriously fall off. This problem is often temperature-related. Some varieties may drop their blossoms when night temperatures fall below 55 while high day temperatures above 90 and night temperatures above 75 may also cause blossom drop. To prevent it, plant resistant varieties keep the soil evenly moist and avoid using high nitrogen fertilizers during the early stages of plant growth. Also watch for signs of early blight or bacterial spot that may cause blossom loss.

Sunscald

Tomatoes get sunburn just like people. At first, a yellowish-white patch appears on the side of the tomato facing the sun. The damaged area gets larger and becomes grayish-white as the tomato ripens.

Prevent sunscald by training tomatoes in cages where the leaves shade the fruit (which delays ripening). On staked plants, leave some foliage to protect the ripening tomatoes. Also, control early blight and other diseases that cause tomato plants to lose their foliage.
Harvesting & Storing Potatoes

White Potatoes

Harvesting

Potatoes can be harvested anytime after they start to form around the roots of the plants. Dig down next to the plant and remove as many as you need. Re-cover the roots and leave the plant to continue growing. When harvesting potatoes for storage, dig potatoes when the tops of the plants are all dead and a skin has formed on potatoes that cannot be slipped or broken when you push your thumb across it. Late-maturing potatoes are best for storage. If early varieties are left in the ground until fall, they may rot, or late rains can cause them to sprout.

Potatoes for storage should be dug on a dry day. Be sure to dig deeply around every plant to get all the potatoes. Spread the potatoes out on a dry surface until the dirt has dried and fallen off the skin. Do not leave them in the sun for any length of time; white potatoes turn green when exposed to light. This green color indicates the presence of solanine, which is poisonous if eaten in a large quantity. Any potatoes damaged in the harvest should be eaten immediately because they will not store well. Only the soundest ones should be stored.

Storage

Potatoes should be stored under moderately moist conditions in the dark at 35°F to 40°F. Use a slatted bin or large mesh bags raised one or two inches off the floor. Because they will need some air circulation, do not pile them any deeper than 12 to 18 inches. These conditions should prevent rotting, softening, and early sprouting.

Sweet Potatoes

Harvesting

To harvest for summer eating, dig the potatoes as needed when they are large enough. To harvest for storage, harvest when the plants are dead and the potatoes are well-matured. Be careful not to damage the potatoes with the shovel or fork when digging, and handle gently. Do not air dry as with white potatoes. Pack them directly into storage containers when harvesting.

Curing

Sweet potatoes must be cured properly before storage. Hold them for about 10 days under moist conditions at 80 to 85°F, if possible. Storage containers should be covered with paper or heavy cloth to keep up humidity; cure in a warm place (near a furnace or stove, for example). Curing should last two to three weeks if the temperature is below 75°F.

Storage

After curing, the potatoes should be stored in a moderately warm (55 to 60°F) and dry place. Temperature should never dip below 50°F. Storage in a closet would be preferable to a cold cellar.

Shannon L. Braswell
Extension Agent
Agriculture - Horticulture

Recommendations for the use of chemicals are included in this publication as a convenience to the reader. The use of brand names and any mention of cataloging commercial products or services in this publication does not imply endorsement by North Carolina State University, North Carolina A & T State University, or North Carolina Cooperative Extension nor discrimination against similar products or services not mentioned. Individuals who use chemicals are responsible for ensuring that the intended use complies with current regulations and conforms to the product label. Be sure to obtain current information about usage regulations and examine a current product label before applying any chemical.

The Cooperative Extension Service, a national educational network established through legislation, is a partnership of the US Department of Agriculture, state land grant universities, and county governments. Programs are open to all citizens without regard to race, color, sex, disability, political beliefs, marital or family status, religion, age or national origin. Mention or display of a trademark, proprietary product, or firm in text or figures does not constitute an endorsement or imply approval to the exclusion of other suitable products or firms. The purpose of this newsletter is to inform and educate homeowners and those interested in all aspects of horticulture.
Have you noticed small yellow spots appearing on your apple tree leaves? If this sounds like your tree then you may have apple cedar rust. Apple cedar rust appears on leaf surfaces during May and June. Specks are normally up to ¼ inch in diameter, turn orange with time, and often have a reddish border. Small black fungal bodies (pycnia) form within the spots and may exude an orange fluid. In time, yellow spots develop on the underside of the leaf. These spots thicken, and during late spring and early summer a number of small, orange-yellow tubular projections appear. These develop into open, cylindrical tubes that split toward the base into narrow strips and curl backward. Infected leaves may turn yellow and drop. Defoliation of rusted leaves is most common in dry summers. On fruit, similar yellow-orange spots appear, usually at or near the calyx end. These spots usually occur on immature fruit and are much larger than the spots on leaves (up to 3/4 inch in diameter). The light green color of the young fruit becomes a darker green around the infected area. The tube-like aecia may form on the slightly raised fruit lesions. Infected fruits are often stunted and misshapen, and may drop early.

Control

- Grow resistant apples. Apple varieties that normally show good to excellent resistance to cedar-apple rust include McIntosh, Red Delicious, and Arkansas Black.
- Destroy nearby wild, abandoned, or worthless apples, crabapples, cedars, or junipers. When practical, prune out and destroy cedar apples found on ornamental junipers and cedars. Although spores produced up to several miles away may occasionally infect apples, most infections result from spores produced on infected *Juniperus* within a few hundred feet of the apple tree.
- Follow a recommended fungicide control program.